Ферми поверхность - definition. What is Ферми поверхность
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

ПОВЕРХНОСТЬ ПОСТОЯННОЙ ЭНЕРГИИ В K-ПРОСТРАНСТВЕ, РАВНОЙ ЭНЕРГИИ ФЕРМИ В МЕТАЛЛАХ ИЛИ ВЫРОЖДЕННЫХ ПОЛУПРОВОДНИКАХ.
Ферми поверхность; Ферми-поверхность

Ферми поверхность         

изоэнергетическая поверхность в пространстве квазиимпульсов р, отделяющая область запятых электронных состоянии металла от области, в которой при Т = 0 К электронов нет. За большинство свойств металлов (См. Металлы) ответственны электроны, расположенные на Ф. п. и в узкой области пространства Квазиимпульсов вблизи неё. Это связано с высокой концентрацией электронов проводимости в металле, плотно заполняющих уровни в зоне проводимости (см. Вырожденный газ, Твёрдое тело). Каждый металл характеризуется своей Ф. п., причём формы поверхностей разнообразны (рис.). Для "газа свободных электронов" Ф. п. - сфера. Объём, ограниченный Ф. п. ΩF (приходящейся на 1 элементарную ячейку (См. Элементарная ячейка) в пространстве квазиимпульсов), определяется концентрацией n электронов проводимости в металле: 2ΩF/(2πħ)3 = n. Средние размеры Ф. п. для хороших металлов Ферми поверхность ħ/a, где ħ - Планка постоянная, а - постоянная решётки, обычно n 1/a3. У большинства металлов, кроме большой Ф. п., обнаружены малые полости, объём которых значительно меньше, чем (2πħ)3n/2. Эти полости определяют многие квантовые свойства металлов в магнитном поле (например, де Хааза - ван Альфена эффект (См. Де Хааза - ван Альфена эффект)). У полуметаллов (См. Полуметаллы) объём Ф. п. мал по сравнению с размерами элементарной ячейки в пространстве квазиимпульсов. Если занятые электронами состояния находятся внутри Ф. п., то она называется электронной, если же внутри Ф. п. электронные состояния свободны, то такая поверхность называется дырочной. Возможно одновременное существование обеих Ф. п. Например, у Bi Ф. п. состоит из 3 электронных и 1 дырочного эллипсоидов. В Ф. п. находит отражение Симметрия кристаллов. В частности, они периодичны с периодом 2πħb, где b - произвольный вектор обратной решётки. Все Ф. п. обладают центром симметрии. Встречаются Ф. п. сложной топологии (с самопересечениями), которые одновременно являются и электронными, и дырочными. Если Ф. п. непрерывно проходит через всё пространство квазиимпульсов, она называется открытой. Если Ф. п. распадается на полости, каждая из которых помещается в одной элементарной ячейке пространства квазиимпульсов, она называется замкнутой, например у Li, Au, Си, Ag - открытые Ф. п., у К, Na, Rb, Cs, In, Bi, Sb, Al - замкнутые. Иногда Ф. п. состоит из открытых и замкнутых полостей. Скорости электронов, расположенных на Ф. п.: υF ≈ 108 см/сек, вектор (направлен по нормали к Ф. п.

Геометрические характеристики Ф. п. (форма, кривизна, площади сечений и т.п.) связаны с физескими свойствами металлов, что позволяет строить Ф. п. по экспериментальным данным. Например, Магнетосопротивление металла зависит от того, открытая Ф. п. или замкнутая, а знак константы Холла (см. Холла эффект) от того, электронная она или дырочная. Период осцилляций магнитного момента (в эффекте де Хааза - ван Альфена) определяется экстремальной (по проекции квазиимпульса на магнитное поле) площадью сечения Ф. п. Поверхностный импеданс металла в условиях аномального Скин-эффекта зависит от средней кривизны Ф. п. Период (по магнитному полю) осцилляций коэффициета поглощения Ультразвука металлом обратно пропорционален экстремальному диаметру Ф. п. Частота циклотронного резонанса (См. Циклотронный резонанс) определяет эффективную массу (См. Эффективная масса) электрона, знание которой позволяет найти скорость электронов на Ф. п. Для большинства одноатомных металлов и многих интерметаллических соединений Ф. п. уже изучены. Теоретическое построение Ф. п. основано на модельных представлениях о движении валентных электронов в силовом поле ионов.

Лит.: Каганов М. И., Филатов А. П., Поверхность Ферми, М., 1969.

М. И. Каганов.

Различный типы ферми поверхностей.

ФЕРМИ ПОВЕРХНОСТЬ         
изоэнергетическая поверхность, ограничивающая в пространстве квазиимпульсов область энергетических состояний, занятых электронами проводимости при Т = ОК. Поверхность Ферми - важнейшее понятие теории металлов. Многие их свойства (теплоемкость, магнитная восприимчивость, электропроводность и т. д.) определяются главным образом электронами с импульсами, лежащими вблизи поверхности Ферми. Названа по имени Э. Ферми.
Поверхность Ферми         
Поверхность Ферми — поверхность постоянной энергии в k-пространстве, равной энергии Ферми в металлах или вырожденных полупроводниках. Знание формы поверхности Ферми играет важную роль во всей физике металлов и вырожденных полупроводников, так как благодаря вырожденности электронного газа транспортные свойства его, такие как проводимость, магнетосопротивление зависят только от электронов вблизи поверхности Ферми. Поверхность Ферми разделяет заполненные состояния от пустых при абсолютном нуле температур.

ويكيبيديا

Поверхность Ферми

Поверхность Ферми — поверхность постоянной энергии в k-пространстве, равной энергии Ферми в металлах или вырожденных полупроводниках. Знание формы поверхности Ферми играет важную роль во всей физике металлов и вырожденных полупроводников, так как благодаря вырожденности электронного газа транспортные свойства его, такие как проводимость, магнетосопротивление зависят только от электронов вблизи поверхности Ферми. Поверхность Ферми разделяет заполненные состояния от пустых при абсолютном нуле температур.

Более сложная форма поверхности Ферми металлов по сравнению с вырожденными полупроводниками объясняется тем, что одну и ту же энергию Ферми пересекают сразу несколько частично заполненных зон. Различные части поверхности Ферми, произошедшие от пересечения с различными зонами, на рисунках, которые являются результатом теоретических расчетов, выделены различными цветами.

Основным способом экспериментального определения топологии поверхности Ферми являются гальваномагнитные измерения.